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The variational Riemann problem (VRP) is defined as the first variation of the
solution to Riemann’s initial-value problem, also known as the problem of breakup
of an arbitrary discontinuity in a gas, when the initial data undergo small vari-
ations. We show that the solution to the VRP can be analytically obtained, pro-
vided that the solution to the baseline Riemann problem is known. This solution
describes the interaction of two abutting parcels of small disturbances against the
background of a given base flow and therefore can be efficiently implemented in
numerical methods for aeroacoustics. When the spatial distribution of disturbances
and base flow parameters are given at a time moment at mesh points of a compu-
tational grid, one can exactly determine the disturbance evolution for a short lapse
of time by solving the VRP at mesh interfaces. This can then be applied to up-
date disturbance values to a new time moment by using the standard finite-volume
scheme. In other words, the VRP can be used in computational aeroacoustics in
the similar way to the Riemann problem used in Godunov-type methods for com-
putational fluid dynamics. The present paper elaborates on this idea and adopts the
solution to the VRP as a building block for a finite-volume Godunov-type method for
aeroacoustics. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

The present paper addresses the development of a novel numerical method for calculating
propagation of sound waves in a nonuniform moving fluid. This method can be treated as
an extension to the Godunov method [1], a well-known approach in computational fluid
dynamics that efficiently employs the exact solution to Riemann’s initial-value problem
(RP) to approximate the numerical flux function at mesh interfaces. The RP, also referred
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to as the problem of the breakup of an arbitrary discontinuity in a gas, is the Cauchy
problem for gas dynamics equations with initial distributions of gas parameters which are
constant in space everywhere except for a surface, say x = 0, where they have a finite gap or
discontinuity. A remarkable property of the RP is that it has a unique solution which can be
analytically obtained for any physically feasible initial data. The most general description
of this solution was given by Kochin [2].

From the physical point of view, the solution to the RP exactly represents the resultant
flow arising from the interaction of two abutting uniform flows. Godunov first applied this
solution to compute compressible flows. According to his original idea, the instantaneous
state of the real flow, characterized by piecewise-smooth distributions of gas dynamics
parameters, is approximately replaced by a set of elementary flows, which are uniform
within each cell of the computational grid. These are then advanced in time by using the
solutions to Riemann problems at cell interfaces between neighboring cells. In light of
this approach the real flow evolution during a small lapse of time is treated as a result of
numerous interactions of elementary uniform flows. The numerical method based on this
consideration is a finite-volume method where the interface flux is evaluated through the
RP solution. The major merit of this method is that it is perhaps a unique numerical method
based in large part on the physics embedded in the compressible flow equations.

In the present paper we extend the philosophy of Godunov’s approach to acoustic prob-
lems that treat sound wave propagation in a compressible, nonuniform, moving fluid. Fol-
lowing Godunov’s suggestion, the instantaneous state of the acoustic field at a certain time
moment is represented by a set of elementary disturbances uniformly distributed within
each cell of the computational grid. Then, the subsequent evolution of the acoustic field for
a small lapse of time can be thought of as a result of interactions between these elementary
cell disturbances in a way similar to that of Godunov’s method for compressible flows. To
make this analogy complete, a powerful tool like the RP is needed to describe the interaction
of two elementary disturbances.

We propose an extension to the RP as such a tool, which will henceforth be referred
to as the variational Riemann problem (VRP). This can be mathematically defined as
the problem on the first variation of the RP solution with respect to small variations in
the initial data. Physically, this problem describes the process of interaction between two
abutting uniformly distributed fields of disturbances against the background of the “breakup-
discontinuity” base flow. The solution to the VRP yields the resultant disturbance field of
this interaction. Therefore, similarly to the RP in Godunov’s method for fluid dynamics, the
solution to the VRP can be implemented in a finite-volume numerical model for calculating
the propagation of sound waves in a nonuniform compressible medium.

Sound generation and propagation are very complicated processes governed by the com-
pressible Navier–Stokes equations, which can be investigated by direct numerical simulation
methods. For example, Mitchell, et al. [3] presented simulations of the sound irradiated by
co-rotating vortices, Inoue and Hattori [4] investigated sound waves generated by shock–
vortex interaction, Nakamura and co-workers [5, 6] and Loh et al. [7] simulated the near-field
noise of an underexpanded supersonic jet with a shock cell structure. However, direct sound
calculation for flows of practical interest at relatively high Reynolds numbers and usually
moderate Mach numbers is quite expensive in terms of computer time.

Another common approach, which gives a significant computational savings over the
direct numerical simulations, is based on the concept of linearization. In this approach,
the flow field is decomposed into two constituents. One represents the field of a base or
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mean flow characterized by averaged flow parameters. The other is the field of acoustic
perturbations, the magnitude of which is assumed to be much smaller than that of the base
flow. Commonly, the base flow is supposed to be known by another method: experimental,
analytical, or numerical. The evolution of the perturbation field is solved by the model of
linearized Euler’s equations (LEE) that neglects both viscosity and nonlinear effects [8–
10]. A shortcoming of the standard LEE model is that the resultant linearized equations no
longer have a conservative form; therefore special attention should be given to numerical
algorithms and boundary conditions to handle wave-type solutions correctly [11].

The numerical method developed in the present paper is based on the same principles
as the standard LEE model, i.e., splitting the flow field variables into a mean flow and a
perturbation part, and neglecting nonlinear and viscous terms. However, the present method
differs from the conventional ones in the linearization procedure; that is, it is applied to
discretized equations, not the differential ones. This means that the governing equations
are first discretized in space and then linearized with respect to conservative variables of
the base flow, so that the discretized perturbation equations are acquired in the form of
conservation laws. The solution to the VRP is effectively exploited in this approach to
linearize Godunov’s numerical flux function and obtain relevant acoustic fluxes.

The paper is organized as follows. The statement and solution of the VRP are dis-
cussed in Section 2. Section 3 considers the proposed linearized methodology for obtaining
Godunov’s LEE discrete model. In Section 4, the treatment of boundary conditions by
means of appropriate VRP solutions is discussed. Validation of the present method against
the theoretical data available from several aeroacoustic theories is presented in Section 5.
Some applications related to the problems of scattering and shock–sound wave interaction
are presented in Section 6 before concluding the paper.

2. VARIATIONAL RIEMANN PROBLEM

Riemann’s initial-value problem for one-dimensional extended gas dynamics equations,

∂Q
∂t

+ ∂F
∂x

= 0, (1)

where Q and F are the conservative state vector and the flux vector, defined by

Q = (ρ, ρu, ρv, ρw, ρE)T ,
(2)

F = (ρu, ρu2 + p, ρuv, ρuw, ρH)T ,

is formulated as a Cauchy problem with piecewise-constant initial data at t = 0:

Q =
{

Ql for x < 0,

Qr for x > 0.
(3)

Here ρ, p, E , and H are the density, the pressure, the total energy, and the total enthalpy,
and u, v, w are x , y, and z components of the velocity vector, respectively. Initial state
vectors Ql and Qr are constant with respect to the space coordinate x .

This problem always has a unique solution under any physically allowable initial data,
which is represented by a piecewise-analytical function of the self-similar parameter
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λ = x/t and initial state vectors Ql and Qr [2, 12]. Denoting this function by QR , we
can write the solution to the RP as

Q(t, x) = QR(λ, Ql , Qr ). (4)

It can also be proven (see Chapter 4 of [12], for example) that this solution necessarily
has a fixed structure or wave pattern, no matter what the initial values are. This structure is
characterized by the following flow features. First, these encompass a set of weak and strong
discontinuities or waves produced by the breakup of an initial discontinuity at x = 0, which
propagate at constant velocities (λ = const.). Among these waves, one and only one contact
discontinuity (CD) must exist. It separates the gas located initially at x < 0 from that at
x > 0. Second, uniform flow domains referred to as contact zones must exist, which abut
the CD on both the left- and right-hand sides. The pressure and the x-directional velocity
component have the same values in these zones. Third, the contact zone and the nonper-
turbed zone of the uniform initial flow on each side of the CD have to be separated by either
only one shock wave or only one centered self-similar rarefaction wave, i.e., a Taylor wave
(TW). Thus, the total number of waves in the RP solution is in the range from 3 to 5, and
the entire flow domain at each time moment consists of several subdomains separated by
the waves, where either uniform flows (in contact and nonperturbed zones) or TW flows are
realized. The solution varies continuously through the TW region in accordance with the
relations

u ± a − λ = 0, cu′ ∓ p′ = 0, v′ = w′ = s ′ = 0, (5)

where a is the sound velocity, c = ρa, s is the entropy, and the prime denotes the derivative
with respect to λ. The upper sign in the relations (5) is used for the TW produced on the
right-hand side of the CD, and the lower one is for the left-hand side.

Flow parameters in these subdomains are matched by appropriate relations between flow
parameters, which are continuity relations at weak discontinuities, i.e., the first and last
characteristics of the TW fan, or Rankine–Hugoniot relations at shock waves, or continuity
of the pressure p and the velocity u at the CD. These relations just suffice to determine the
wave pattern and the flow parameters in two contact zones. A more detailed description of
the RP problem solution can be found in [12].

An extension of the RP, the VRP, can be suggested as follows. Let the solution to the RP,
QR(λ, Ql , Qr ), be known for initial state vectors Ql and Qr . The question to be considered
is how this solution varies when the initial parameters undergo small variations

Ql → Ql + δQl , Qr → Qr + δQr . (6)

This is specified by the first variation of the RP solution with respect to the initial state
vectors, which can be represented by a linear form as

δQR = MlδQl + MrδQr (7)

in terms of two variational matrices, Ml and Mr , associated with the left- and right-hand
side initial state vectors, respectively, and defined by the following relations:

Mi = Mi (λ, QR) = ∂QR

∂Qi
, i = l, r. (8)
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The VRP is to determine the first variation of the RP solution QR or the variational
matrices that define this variation. Note that in a manner similar to how the RP solution
describes the interaction of two uniform compressible flows, the solution to the VRP does
the same for small disturbances. Therefore, this is of prime importance for understanding
the physics of the evolution of acoustic fields in nonuniform flows.

To solve the VRP, first note that both Ml and Mr are piecewise-analytical matrix functions
of the self-similar parameter λ with the same domains of analyticity as the base nonvaried
solution QR . The analyticity domains are specified by the set of waves stemming from the
initial discontinuity, or in other words, by the wave pattern produced in the nonvaried RP.

Moreover, these matrices are just constant with respect to λ within uniform flow subdo-
mains, which are contact and nonperturbed zones of the nonvaried solution. Let λ1, . . . , λ5

denote wave velocities, where λ3 is the CD velocity and λ1 and λ2 are the velocities of the
first and last characteristics in the TW, respectively, if λ1 
= λ2, or the velocity of a shock
wave or a weak discontinuity on the left-hand side of the CD, if λ1 = λ2. The notations λ5

and λ4 are used for the similar waves on the right-hand side. Then the variational matrices
within nonperturbed regions are simply evaluated as

Ml = I and Mr = O if −∞ < λ < λ1,

Ml = O and Mr = I if λ5 < λ < +∞,
(9)

where I is the unit matrix and O is the null matrix.
In contact zones with λ2 < λ < λ3 and λ3 < λ < λ4, these matrices have to be defined

by means of appropriate matching relations for perturbations at the CD λ = λ3 and at the
last characteristic in the TW, the shock wave, or the weak discontinuity λ = λ2,4 as well.

We find it convenient to define the vector of primitive variables U = (u, p, s, v, w)T and
consider variational matrices µl and µr associated with this vector such that

δUR = µlδUl + µrδUr . (10)

Once these matrices are determined, the variational matrices Ml and Mr can be obtained
by the relation

Mi = B(UR)µi B(Ui )
−1, i = l, r, (11)

where B(U) is the transforming Jacobian from the conservative to the primitive variables,
defined by B(U) = ∂Q/∂U.

2.1. Solution in the TW Region

Solution of the VRP in the TW region with λ1 ≤ λ ≤ λ2 and λ4 ≤ λ ≤ λ5 is attained
by varying the relations (5). This results in a system of ordinary differential equations for
variations, which can be efficiently integrated in terms of two varied Riemann invariants
δ I ± defined by

δ I ± = cδu ± δp. (12)

Using matching relations at TW leading characteristics of

δU + U′δλ1 = δUl at λ = λ1,

δU + U′δλ5 = δUr at λ = λ5,
(13)
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yields relations for variations in the TW region,

δ I ∓ = c

ci
δ I ∓

i ∓ c
∫ p

pi

1

c2

(
∂c

∂s

)
p

dp · δsi ,

δu ± δa = 0,

δv = δvi , (14)

δw = δwi ,

δs = δsi ,

where the subscript i = l and the upper sign are used for the left-hand-side TW, while
i = r and the lower sign are used for the right-hand-side TW. The variation of the leading
characteristic velocity is simply determined by

δλi = δui + δai = δui +
(

∂a

∂s

)
p,i

δsi +
(

∂a

∂p

)
s,i

δpi . (15)

Relations (14) can be transformed into a matrix form as

δU = µTW
i δUi (16)

with the matrix µTW
i defined by

µTW
i =

∣∣∣∣∣∣∣∣∣∣∣∣

1 − � ∓(1 − �)/ci ∓[ω(1 − �) + �(∂a/∂s)p] 0 0

∓�c c�/ci c�[ω − (∂a/∂s)p] 0 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣
, (17)

so that the variational matrices in the TW regions take the form

µl = µTW
l , µr = O for λ1 ≤ λ ≤ λ2,

µl = O, µr = µTW
r for λ4 ≤ λ ≤ λ5.

(18)

Here the following notation was used:

� = 2

γ + 1
,

γ = 1 + ρ

(
∂a2

∂p

)
s

, (19)

ω =
∫ p

pi

1

c2

(
∂c

∂s

)
p

dp.

For a calorically perfect gas, γ reduces to the ratio of specific heats, and ω and (∂a/∂s)p

take the forms

ω = a − ai

(γ − 1)si
,

(20)(
∂a

∂s

)
p

= − a

2si
.
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Note that the convention about the usage of the subscript i and “plus–minus” superscript
to distinguish left- and right-hand-side TWs is used in relations (15)–(20) as well.

2.2. Solution in Contact Zones

Variations of flow parameters are constant within two contact zones with λ2 ≤ λ ≤ λ3

and λ3 ≤ λ ≤ λ4, respectively, which must be defined by appropriate matching conditions
for the waves bordering these zones. These conditions depend on the specific wave pattern
exhibited by the solution of the base RP. Therefore, there are three distinguishing cases:
The contact and unperturbed zones can be separated by (1) a weak discontinuity, (2) a TW,
or (3) a shock wave.

In the case of weak discontinuity separation, or TW separation, matching relations can
be uniformly written as

[δ I ∓] = [s] = [v] = [w] = 0 at λ = λi , (21)

where [·] denotes the magnitude of discontinuity at λ = λi . Here λi is assumed to equal λ2 or
λ4, depending on which contact zone, on the left- or right-hand side, is under consideration,
and the aforementioned double-sign superscript convention is used; i.e., the upper sign
corresponds to the waves located on the right-hand side of the CD, while the lower one
corresponds to the left-hand side waves.

Equations (21) are fewer in number than the unknowns; thus they are not sufficient to
determine all components of the variational vector δU in the contact zone. There is inde-
terminacy of just one parameter; therefore this vector can be expressed as a one-parameter
solution with one arbitrary or free parameter. In what follows, we find it convenient to write
this in terms of initial variations δUl,r as

Ui
3 = N iδUi + mi Ci , i = l, r (22)

with matrix N and vector m, which are referred to as contact matrix and vector, respectively,
and free parameter C . Hereafter, the subscript 3 denotes contact zone values.

By taking δu3 as the free parameter C and using relations (16) and (17) for TW variations,
it can be shown that the contact matrix and vector in the case of TW separation are similar
to those in the case of weak discontinuity separation. These are written for the both cases
in the following form:

N i =

∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 0
∓c3 c3/ci c3(ω3 − ωi ) 0 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣
, mi =

∣∣∣∣∣∣∣∣∣∣∣

1
±c3

0
0
0

∣∣∣∣∣∣∣∣∣∣∣
. (23)

The variation of the velocity of the TW’s trailing characteristic is related to the constant C as

δλi = Ci − δuTW

u′

∣∣∣∣
λ=λi

, (24)

where the variation of the velocity in the TW zone, δuTW, is defined by relations (16)
and (17).
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A shock wave separating the contact and nonperturbed zones is another possible wave
configuration of the RP solution. In this case the base flow parameters have a jump at this
wave, following the Rankine–Hugoniot relations. The matching relations between variations
are attained by varying the Rankine–Hugoniot relations. These can be written in a matrix
form as

[(A − λi I )BδU] = δλi [Q], (25)

where A represents the Jacobian matrix of the flux F, i.e., A = ∂F/∂Q, and the square
brackets denote the magnitude of the discontinuity at the shock wave; i.e., [·] = (·)3 − (·)i

with i = l or r , depending on whether λi = λ1 = λ2 or λi = λ4 = λ5, respectively.
As in the case of TWs or weak discontinuities, the number of shock wave matching

relations (25) is not sufficient to determine all variations in the contact zone. These relations
are solved under the indeterminacy of one arbitrary or free parameter. The solution can also
be represented in the form of relation (22) with Ci as the free parameter. We found it
convenient to introduce this parameter as

Ci =
[

1

ρ

]
δmi + δρi

ρ2
i

mi , (26)

where mi denotes the mass flux across the shock wave; i.e., mi = ρi (ui − λi ) = ρ3(u3 −
λi ). Based on such a choice, by tedious but not difficult algebra, one can obtain the contact
matrix N and the vector m for the case of shock wave separation as

N i =

∣∣∣∣∣∣∣∣∣∣∣

1
(
1 + M2

i

)
/mi + χ2 −miσi Ti − χ3 0 0

0 −miχ2 miχ3 0 0

0 −�i/(mi T3) Ti/T3 0 0

0 0 0 1 0
0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣
, mi =

∣∣∣∣∣∣∣∣∣∣∣

−1 − χ1

χ1mi

�i/T3

0
0

∣∣∣∣∣∣∣∣∣∣∣
, (27)

where �i = u3 − ui , Mi = mi/ci is the shock wave Mach number, T is the temperature
defined by the partial derivative of enthalpy with respect to entropy with pressure held
constant, and σ = (∂T/∂p)s/T . The parameters χ1, χ2, χ3 included in relations (27) are

χ1 = 2 + mi�iσ3

M2
3 − 1

, χ2 = 1 + M2
i + mi�iσ3

mi
(
M2

3 − 1
) , χ3 = mi Ti

σ3 + σ1

M2
3 − 1

, (28)

where M3 = mi/c3 is the relative Mach number of the flow in the contact zone just after
the shock wave.

When deciding the free parameter Ci by Eq. (26), the variation of the shock wave velocity
is performed as

δλi = δui + ρ3

ρ3 − ρi

[
Ci − δρi

ρ3
(ui − λi )

]
. (29)

The solution in the contact zones, which is given by Eq. (22) with Eq. (23) or (27),
is completely determined by specifying the free parameters Cl and Cr corresponding to
the left- and right-hand sides of the CD, respectively. This can be fulfilled by means of
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matching relations at the CD. There are just two such relations linking the pressure and
velocity variations at λ = λ3:

[δu] = 0, [δp] = 0. (30)

Specifically, by substituting Eq. (22) into Eq. (30), two equations are obtained to define Cl

and Cr . By using these equations, the construction of the solution in the contact zones is
completed.

Thus, if the solution to the base RP is known, variational matrices of the VRP can be
found throughout the flow, i.e., for any value of λ, where −∞ < λ < +∞, by means of
Eq. (22) with Eq. (23) or (27), and with Cl and Cr defined by Eq. (30). This can be compactly
arranged by introducing the concept of proper and associated values. A parameter is either
proper or associated, depending on the value of the self-similar variable λ. For example,
if it is evaluated so that λ pertains to the left-hand side of the CD, then the left-hand-
side parameters are referred to as proper, and those of the right-hand side as associated,
and vice versa. Denoting associated values by superscripted asterisks and initial values by
subscripted zeroes, we can represent the variation of the RP solution in the form

δU = µδU0 + µ∗δU∗
0, (31)

with the proper and associated matrices µ and µ∗ defined as

µ = I, µ∗ = 0 in the nonperturbed zone,
µ = µTW, µ∗ = 0 in the TW zone,
µ = N + m × k∗, µ∗ = m × n∗ in the contact zone,

(32)

where µTW is the TW’s variational matrix given by Eq. (17) and N and m are defined by
Eq. (23), when the TW or weak discontinuity occurs in the base RP, separating the contact
and nonperturbed zones, or by relations (27) and (28) when a shock wave is the separation.
The vectors n and k in these relations are given by

n = m2N1 − m1N2

m2m∗
1 − m1m∗

2

, k = m1N∗
2 − m2N∗

1

m2m∗
1 − m1m∗

2

, (33)

where N1 and N2 denote the first and the second row of the contact matrix N , respectively,
while m1 and m2 are the first and the second component of the vector m, respectively.

The free parameter C of the contact zone, which concerns the variation of wave velocities
via relations (24), (26), or (29), is specified with the foregoing designations as follows:

C = (k∗, δU0) + (n∗, δU∗
0). (34)

As a particular case of the foregoing general solution, let us consider the VRP solution
for a single contact discontinuity. In this situation, the wave configuration of the base RP
solution consists of three waves: one contact discontinuity with λ = λ3 and two weak
discontinuities λ = λ1 = λ2 and λ = λ4 = λ5 situated on the left- and right-hand sides of
the contact discontinuity, respectively. The proper and associated matrices are defined in
the contact zones with relations (23), (32), and (33) in this case, which can be written in the
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form

µ =

∣∣∣∣∣∣∣∣∣∣∣

c0/c̄ ∓1/c̄ 0 0 0

∓c0 ± c2
0/c̄ 1 − c0/c̄ 0 0 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣
, µ∗ =

∣∣∣∣∣∣∣∣∣∣∣

c∗
0/c̄ ±1/c̄ 0 0 0

±c0c∗
0/c̄ c0/c̄ 0 0 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣
, (35)

where c̄ = c0 + c∗
0 = cl + cr , and the upper sign must be used for λ > λ3, while the lower

one holds for λ < λ3. Specifically, this yields the resultant variation of pressure and velocity
in the interaction zone (λ1 ≤ λ ≤ λ5) as

δu = clδul + crδur − (δpr − δpl)

c̄
,

(36)

δp = crδpl + clδpr − clcr (δur − δul)

c̄
,

which exactly agrees with the linearized RP solution introduced by Godunov et al. [12].

3. LEE-BASED GODUNOV METHODOLOGY

In this section, the foregoing VRP solution is applied to a linearized numerical approach
for studying the evolution of the acoustic field against the background of a nonuniform
flowfield. As in the model of the linearized Euler equations commonly used for aeroacoustics
calculations, the fluid flow in the present approach is decomposed into a mean or base flow
and a field of acoustic disturbances, the magnitude of which is assumed to be much smaller
than that of the base flow. The base flow is prescribed with other numerical or analytical
methods and unmodified by the disturbances, whereas the evolution of the disturbance field
depends strongly on the base flow and is determined by linearized equations. The base flow
might also be time dependent.

To obtain the linearized discrete equations, we make use of the compressible Navier–
Stokes equations that are spatially discretized on a given computational grid with the finite-
volume method,

ωi
dqi

dt
+

∑
σ

sσ T −1
σ Fσ =

∑
σ

sσ gσ , (37)

where qi is the i th cell average value of the vector of conservative variables, ωi is the
i th cell volume, sσ is the σ th cell interface area, Fσ is the local one-dimensional inviscid
flux averaged over the interface, gσ is the interface-averaged viscous flux, and Tσ is the
transforming matrix defined by the coordinates of unit vectors forming the local basis at
the interface [13]. The summation in Eq. (37) is performed over all interfaces surrounding
the i th cell. The approximation for the interface fluxes Fσ and gσ is made so that they can
be regarded as functions of cell-attributed values qi.

The discretized flow variables in (37) are then split into the base flow and disturbance
constituents, which are denoted by the symbol of overline and hat, respectively,

qi = q̄i + εq̂i, (38)

where ε � 1.
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With this decomposition the inviscid and viscous fluxes can be represented by three
contributions as

Fσ = F̄σ + F̂σ + F̃σ ,
(39)

gσ = ḡσ + ĝσ + g̃σ ,

which correspond to a base flow flux of O(1), a linear acoustic flux consisting of terms
of O(ε), and a nonlinear acoustic flux including terms of O(ε2) and higher. The latter is
denoted by the tilde symbol in (39).

The linearized equations for disturbances are obtained by substituting the decomposition
(38) and (39) into Eq. (37) and collecting terms with the same order in the parameter ε.
In doing so, several assumptions [8, 9, 11, 14] are made. First, we assume that the base
flow variables alone obey the discretized Navier–Stokes equations (37), and therefore all
terms of O(1) can be removed. Second, the viscous disturbance fluxes ĝσ and g̃σ play no
major role in the propagation of acoustic waves, and thereby they may be neglected. Third,
the contribution from the nonlinear inviscid acoustic fluxes, which is mostly responsible
for sound generation processes, may be arranged by a suitable volume source term, S,
modelling the production of disturbances. This term is commonly built up from available
experimental data or calculated results obtained with a direct numerical simulation (DNS)
or under certain restrictions a large eddy simulation, as suggested in [10, 25], for example.

With the foregoing assumptions, the linearized model for the evolution of small distur-
bances against the background of a base flow is described by the following equations:

dqi

dt
+ 1

ωi

∑
σ

sσ T −1
σ F̂σ = Si . (40)

The key point of the present approach is the approximation of the cell-interface acoustic
flux F̂σ , which depends on both the base flow and disturbance variables. We treat this flux
from the standpoint of Godunov’s approach as the resultant flux produced at the cell interface
due to interaction between disturbance fields in the two neighboring cells. By introducing the
cell-interface-transformed conservative vector Q with the relation Q = Tσ q, the acoustic
flux can be obtained through the foregoing solution to the VRP as

F̂σ = A
(
Q̄R

σ

)
Q̂R

σ , (41)

where A(Q) = ∂F/∂Q is the Jacobian matrix of the local one-dimensional inviscid flux
and Q̄R

σ = Q̄R
σ (0, Q̄σ

i , Q̄σ
σ(i)) is the solution to the base RP stated at the cell interface with

appropriate left- and right-hand-side base flow variables, Q̄σ
i and Q̄σ

σ(i), respectively. Here
the subscript σ(i) denotes the order number of the cell abutting the i th cell through the σ th
cell interface.

The vector Q̂R
σ in (41) is the solution to the VRP, which represents the variation of the

base RP solution due to the presence of the disturbance field in the two abutting cells. This
can be written by using variational matrices obtained in the previous section as

Q̂R
σ = Mi

(
0, Q̄σ

i , Q̄σ
σ(i)

)
Q̂σ

i + Mσ(i)
(
0, Q̄σ

i , Q̄σ
σ(i)

)
Q̂σ

σ(i), (42)

where the superscript σ indicates the values of disturbance variables at the center of the cell
interface.
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A first-order scheme is attained, if a constant distribution in space is assumed for the
disturbance variables within each computational cell, so that Q̂σ

i = Q̂i . There are many
different ways to achieve higher order accuracy. In the present approach, a higher order
accuracy scheme is realized by linearly reconstructing the primitive vector of disturbances
inside each computational cell [15, 16]. By doing so, cell interface disturbance variables
are determined by

Ûσ
i = Ûi + (∇Ûi , rσ

i

)
, (43)

with rσ
i being the radius vector from the center of the i th cell to the center of the σ th

interface. The gradients associated with cell centers can be computed by using the values
of primitive disturbance variables in the surrounding cells with the method of least squares.

Using relations (41) and (42), the discretized equation (40) can be written in the convenient
form

dq̂i

dt
= Ri(q̂),

(44)

Ri(q̂) = Si − 1

ωi

∑
σ

sσ T −1
σ A

(
Q̄R

σ

)[
Mi Tσ q̂σ

i + Mσ(i)Tσ q̂σ
σ(i)

]
,

where the vector of conservative variables at the cell interface, q̂σ
i , is derived through the

primitive vector defined by Eq. (43). These equations are then solved, using a low storage
third-order Runge–Kutta scheme, which is implemented as

q̂(1)
i = q̂n

i + 1

3
�tRi (q̂n),

q̂(2)
i = q̂n

i + 2

3
�tRi

(
q̂(1)

)
, (45)

q̂(n+1)
i = q̂n

i + 1

4
�tRi (q̂n) + 3

4
�tRi

(
q̂(2)

)
,

with �t being the time step. This scheme is stable under the standard CFL condition, based
on the largest absolute wave speed of the base flow.

4. TREATMENT OF BOUNDARY CONDITIONS

Within the framework of the present approach, various numerical boundary conditions
for acoustic fluxes can be treated in a common way by using the solution to an appropriate
VRP. From the foregoing consideration, it follows that, if a face of the i th cell, σ , is found
to be a part of the outer boundary of the computational domain, only the neighbor vector of
disturbances, Q̂σ

σ(i), must be specified to determine the relevant acoustic flux using relations
(41) and (42). This specification is done, depending on which boundary becomes involved
in the calculation. There are three types of outer boundaries to be considered.

The first type is referred to as an inlet boundary. It corresponds to the situation where a
given disturbance, Q̂ext, is forced to be embedded in the flow at the boundary. In this case,
the neighbor vector of disturbances in the boundary VRP solution is taken as

Q̂σ
σ(i) = Q̂ext. (46)
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The second type is an outlet boundary. This models the situation when acoustic distur-
bances leave the computational domain with no reflection at the boundary. This is achieved
by setting the neighbor vector of disturbances at the boundary such that the vector of the
VRP solution given by (42) satisfies the condition

Q̂σ
σ(i) = Q̂R

σ . (47)

This yields the boundary condition

Q̂σ
σ(i) = [

I − Mσ(i)
]−1

Mi Q̂σ
i . (48)

Finally, the third type of boundary condition is introduced to simulate the interaction of
acoustic waves with a rigid wall. In general, the wall may be in motion. It is also divided
into a main motion to be related to the base flow and a small acoustic mode motion that
affects the acoustic field only, such as the vibrating surface of a speaker, for example. By
specifying a conservative vector Q̂wall, which is equal to the cell-based vector Q̂σ

i in all
variables except for velocity components that are replaced by appropriate components of
the velocity of the wall acoustic motion, the boundary condition for this type can be written
as

Q̂σ
σ(i) = I ∗(Q̂σ

i − Q̂wall
) + Q̂wall. (49)

Here the matrix I ∗ coincides with the unit matrix I in all components other than (I ∗)22,
which is equal to −1.

5. VERIFICATION TESTS

In this section we present the results of three test calculations carried out to verify the
present numerical approach and to examine the accuracy of the computational solutions.
The first two problems deal with the acoustic fields generated in a quiescent gas by means
of a monopole-type sound source and a dipole-type sound source, respectively. The third
one is the problem of plane monochromatic sound waves incident on a plane shock wave.
Each of these problems allows for a closed-form analytical solution that can be applied
for comparison with relevant numerical solution to determine the accuracy of the proposed
conceptual model.

5.1. Monopole-Type Emitter

The monopole-type source of sound waves is modeled with the emitter represented by
a rigid sphere of radius R, which executes small harmonic radial pulsations in a gas at
rest. The ambient gas is assumed to be a calorically perfect gas with base pressure p0

and base density ρ0. The radial velocity of points on the surface of the sphere is given as
Ur = U0 cos(ωt), where t is time and ω is the frequency of pulsations. For the linearized
model to be applicable, the characteristic velocity of pulsations, U0, is supposed to be small
compared with the speed of sound in the ambient gas.

The calculation of this problem is carried out in the computational domain bounded by
the emitter surface and the outer spherical surface located at a distance of about 5 radii
from the emitter. Although the problem is one dimensional, this calculation is performed
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FIG. 1. Iso-contours of the acoustic pressure field for a monopole emitter (Str = 10.82).

in the meridional plane as axis-symmetric by using a structured grid that consists of 150
computational cells uniformly distributed along the emitter surface and 80 even cells in
the radial direction. The emitter surface is treated by the wall-type boundary conditions
considered in the previous section. The outlet boundary conditions are implemented at the
outer boundary.

Computed results are represented here by instantaneous iso-contours of the acoustic
pressure, which are shown in Fig. 1 for a high-frequency condition related to Str = 10.82.
Here Str denotes the Strouhal number based on the emitter radius, the emitter frequency,
and the speed of sound in the ambient gas; i.e., Str = ωR/c0. A centrally symmetric wave
pattern of the computed acoustic field is clearly discernible in this figure.

A quantitative comparison is fulfilled for the total intensity of the irradiated sound field
defined by

I =
∮

p̂v̂n ds, (50)

where the integration is performed over a spherical surface surrounding the emitter, v̂n

denotes the component of the acoustic velocity normal to this surface, and the overbar
means time averaging.

According to acoustic theory [17], the normalized total emission depends on the Strouhal
number and has the following

I

I ∗ = Str2

1 + Str2 , (51)

where I ∗ is a reference intensity given by I ∗ = 2π R2c0ρ0U 2
0 .

In the calculation the total intensity of irradiated sound is computed by integrating the
flux of sound energy p̂v̂n over the outer boundary and averaging the resultant value over
the period of emitter oscillations. Calculations have been performed for different values of
the Strouhal number, which correspond to low- and high-frequency emitters. In Fig. 2, the
computed values of the normalized intensity of sound are plotted versus the Strouhal number.
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FIG. 2. Total sound intensity versus Strouhal number for monopole-type emitter.

For comparison, the theoretical relation (51) is also shown. As is seen from this figure, the
computed data well agree with the theoretical curve over a wide range of wavelength.

5.2. Dipole-Type Emitter

The dipole-type source of sound waves is simulated in the same manner as the monopole-
type source by moving a rigid sphere in a gas at rest. The acoustic field is generated
by the sphere with radius R executing small harmonic translatory oscillations at a fre-
quency of ω. Taking the direction of the oscillations as the x axis of a Cartesian system
of coordinates, the velocity components of points on the sphere surface are then given as
Ux = U0 cos(ωt), Uy = Uz = 0, where the velocity of the oscillations is also assumed to
be small compared with the speed of sound in the ambient gas.

Calculation conditions for this test problem are similar to those of the monopole source.
The computed results are shown in Fig. 3, where instantaneous iso-contours of the acoustic
pressure field are plotted for a high-frequency dipole emitter with Str = 10.82. As can be

FIG. 3. Iso-contours of the acoustic pressure field for a dipole emitter (Str = 10.82).
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FIG. 4. Total sound intensity versus Strouhal number for dipole-type emitter.

seen, there are preferred emissions in the direction of emitter oscillations. The wave pattern
is strictly symmetric with respect to the vertical meridional plane.

The computed total intensity of sound emission is presented in Fig. 4. Acoustic theory
[17] predicts the total emission from the dipole source as

I

I ∗ = 1

3

Str4

4 + Str4 . (52)

As seen from the figure, the calculated results are in good agreement with the theory for the
range of Str.

5.3. Sound Wave Incident on a Shock Wave

The third test to verify the present numerical method concerns the refraction of sound
waves by a shock wave. Figure 5 shows a schematic drawing of the acoustic wave/fluid flow

FIG. 5. Schematic drawing of sound–shock interference: Mi, incident flow Mach number; φ, impingement
angle; χ , deflection angle; ψi, incident sound angle; ψt, transmitted sound angle.
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configuration. This represents a steady oblique shock wave that is irradiated with planar
monochromatic sound waves. The base flow comprises two uniform flows: an incident flow
with Mach number Mi and incidence angle ϕ and a compressed flow behind the shock wave.
The angle χ denotes the angle of flow deflection, which depends on Mi and ϕ through the
Rankine–Hugoniot relations. Sound is incident on the shock wave from the side of the
rarefied gas at angle ψi. Because the incident flow is supersonic, there must be no reflected
waves formed in the incident flow ahead of the shock, while a transmitted wave with an
angle of propagation ψt appears behind the shock along with an entropy-rotational wave
that is carried by the gas flow.

This problem was first treated by Blokhintsev in 1945 for the case of normal incidence
on a shock wave in an ideal gas. The analytical solution, cited in [17], yields parameters
(transmission coefficients) of transmitted sound waves as a function of the Mach number
of the incident flow. Then Brillouin tried studying oblique incidence but obtained incorrect
results [18]. Kontorovich corrected these results and extended the solution to an arbitrary
gas model [19].

By using the VRP solution described in Section 3, the solution to the sound–shock
interference problem also can be efficiently obtained from appropriate proper and associated
matrices. In fact, the transmitted field must satisfy the VRP solution with initial primitive
disturbance vectors δUi and δUt, where the subscript i denotes the incident wave parameters.
Therefore, these must satisfy the relation

δUt = µ0δUi + µ∗
0δUt, (53)

where µ0 and µ∗
0 are proper and associated matrices in the contact zone behind the shock

wave, which are given by (32) with the contact matrix M and the contact vector m being
determined by (27).

This field consists of a transmitted adiabatic sound wave, δU1, and an entropy-rotational
wave, δU2, such that

δUt = δU1 + δU2. (54)

Parameters of the entropy-rotational wave obey the following relations:

δp2 = 0, (δv2, vsh) = 0. (55)

The refraction law for the sound wave is formulated as

(δvi, ki) + ai

sin ψi
= (δv1, k1) + ash

sin ψt
, (56)

where k denotes the unit propagation vector and the subscript sh indicates parameters of
the compressed flow behind the shock wave. Parameters of the sound wave are related as
follows:

δs1 = 0, δp1 = ρsh(ash + (k1, vsh))δv1. (57)

Equations (53)–(57) can be solved by using simple Newton’s iterations. This determines
the amplitudes of the transmitted sound and entropy-rotational waves. Figure 6 shows
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FIG. 6. Refraction angle versus incidence angle.

the refraction angle, ψt, versus the incidence angle, ψi, calculated with this approach for
ϕ = π/2 and several values of the incident flow Mach number. The pressure ratio between
the incident and transmitted waves scaled by M2

i is plotted versus the incidence angle in
Fig. 7 for three values of Mi. These results are exactly in line with those obtained previously
in [19].

The numerical simulation of a sound wave incident on a shock wave is performed on a
two-dimensional structured grid in a rectangular computational domain. First, the case of
normal incidence is considered, where the base flow is a gas flow upstream and downstream
of a stationary plane shock wave vertically situated at the middle of the computational
domain. The incident sound waves are modeled by inlet boundary conditions at the left
boundary, where the primitive vector of disturbances is specified as Û = Û0 cos(ωt). The
amplitude vector Û0 = ( p̂0/(ρici), p̂0, 0, 0, )T , where p̂0 is the pressure amplitude of the
wave. The nonreflecting boundary conditions described in Section 5 are used for other
boundaries. There exist no disturbances in the computational domain at the initial instant.

FIG. 7. Pressure amplification in the transmitted wave versus incidence angle.
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FIG. 8. Pressure contours in the normal incidence problem, where ω = 8π , p̂0 = 0.01, and Msh = 1.5.

Although the problem is substantially one dimensional, calculations are carried out as two
dimensional on a grid with 320 and 10 cells evenly distributed in the streamwise and normal
directions, respectively.

Calculated results for a nondimensional frequency, ω, of 8π , incident wave amplitude,
p̂0, of 0.01, and a shock Mach number of 1.5 are plotted in Figs. 8 and 9, where the computed
acoustic pressure is displayed in contours and as a streamwise distribution, respectively.
Since the gas in the upstream region moves at supersonic speed, there must be no waves
reflected from the shock. This is clearly observed in Fig. 9, where the waveform ahead of
the shock is exactly in line with that specified at the inlet boundary. It can also be seen that
there is no reflection of sound waves from the right boundary, although the downstream
flow is subsonic.

While being transmitted across the shock, the pressure amplitude of the sound wave is
increased. This increase is well captured by a calculation without any artificial overshoots or

FIG. 9. Streamwise distribution of pressure in the normal incidence problem, where ω = 8π , p̂0 = 0.01, and
Msh = 1.5.
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FIG. 10. Amplification of sound pressure for normal incidence of sound on shock.

undershoots for when the acoustic flux at the shock was computed inaccurately, or with some
approximations. The pressure ratio of the incident wave to the transmitted one is plotted for
several values of the shock wave Mach number in Fig. 10 along with the analytical solution
given in [17] for comparison. The agreement between the computation and the theory is
very good.

The numerical simulation of an oblique incidence of sound on a shock wave is also
considered. This calculation is carried out in the computational domain taken such that its
diagonal is in line with the shock wave. Thus, unlike the normal incidence case previously
mentioned, the shock is no longer aligned with the grid lines.

The following simulation parameters were used: a uniform grid containing 300 and 200
cells in the horizontal and vertical directions, respectively, a Mach number of the rarefied
flow before the shock of Mi = 6, and an impingement angle of ϕ = 74.32◦. Under these
conditions, the compressed flow is deflected at χ = 40◦.

The shock wave is irradiated by planar sound waves from the upstream side. This is
modeled by setting the primitive vector of acoustic parameters at the left and top boundaries
as

Û = Û0 cos[(k, r) − (ω + (k, Vi))t], (58)

where k = ωn/ci, with n being the unit propagation vector. The bottom and right boundaries
of the computational domain are treated with outlet boundary conditions (48). There are no
initial disturbances.

The angle of sound incidence, ψi, was taken to be 48.45◦. In the flow conditions under
consideration, the theory predicts that sound is refracted behind the shock wave at ψt =
34.32◦ (see Fig. 6), which corresponds to the propagation of transmitted sound waves just
in the vertical direction toward the bottom boundary of the computational domain. This is
clearly discernible in numerical results shown in Fig. 11, which displays contours of the
computed sound pressure with ω = 7.5π .
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FIG. 11. Computed acoustic pressure field for oblique sound–shock incidence.

6. EXAMPLE CALCULATIONS

In this section we present the results of two example calculations carried out with the nu-
merical approach proposed here. The problems involve propagation of acoustic disturbances
against the background of a nonuniform base flow. As in previous verification calculations,
it is also assumed here that the base flow is given and not affected by disturbances. A
calorically perfect gas with a ratio of specific heats, γ , of 1.4 is used as the gas model.

6.1. Scattering of Sound Waves by a Vortex

The scattering of sound waves by a compressible vortex has been used as a test problem
to validate numerical schemes for aeroacoustic calculations [20, 21]. This problem has been
intensively studied during the past 20 years (for example, see [22] and references therein)
and hence a large number of theoretical, numerical, and experimental results can be used
for comparison.

We study the scattering problem by solving the discretized equations of the LEE model
presented in Section 4. The computations are performed in a square computational do-
main with a side length 2L , which is schematically drawn in Fig. 12. A plane sound wave
with wavelength λ is emitted on the left side of the domain and propagates toward a two-
dimensional vortex with a core radius of a, which is located in the center of the domain.
Parameters of scattered sound are analyzed at the observation point specified by the mag-
nitude of the radius r and the polar angle ϕ.

The distribution of the vortex flow parameters in the radial direction is taken so as to
follow the two-dimensional compressible Euler equations. Specifically, we choose a zero
circulation homentropic vortex [20], where the velocity of the base flow decays exponen-
tially fast as we go away from the vortex center, and the entropy has a constant distribution
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FIG. 12. Schematic diagram for sound scattering calculations.

in space:

ur = 0,

uϕ = 2
r

a
µ exp

[
−

(
r

a

)2]
, (59)

p = const · ργ .

The factor µ in these relations is proportional to the maximal value of the azimuthal velocity
uϕ , which characterizes the vortex intensity. Under these asumptions, the pressure is given
by

p = p∞

{
1 − γ − 1

γ

ρ∞
p∞

µ2 exp

[
−2

(
r

a

)2]}
. (60)

The generation of incident sound waves at the left-hand boundary of the computational
domain is modeled by the inlet boundary conditions with the prescribed primitive vector
of disturbances taken as Ûσ = Û0 cos ωt . The bottom, top, and right-hand boundaries are
treated with the outlet boundary conditions. A two-dimensional structured grid is used,
which consists of 271 evenly spaced cells in each direction. The computational domain
extends 20 vortex core radii from the center; i.e., L/a = 20.

The scattered wave field is thought of as a field that arises from the interaction of the
incident waves with the vortex flow field. Therefore, while computing the propagation of
incident waves, scattered waves can be obtained by subtracting the acoustic field computed in
the gas at rest, i.e., without the base flow (µ = 0), from identical computations performed
in the presence of the vortex flow.

Calculations are carried out for several values of two basic nondimensional parameters
which strongly affect the scattering process. One of these parameters is the vortex Mach
number, Mv, defined with the maximal velocity, uϕ,max, and the speed of sound at infinity,
c∞. The other is parameter δ, which equals the ratio between the wavelength of incident
waves and the vortex radius, i.e., δ = λ/a. It is assumed that there is initially no acoustic
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FIG. 13. Instantaneous pressure contours in the scattered field for Mv = 0.125 and δ = 4.

field in the computational domain, and the acoustic source term S on the right-hand side of
Eq. (44) is neglected.

Figure 13 shows instantaneous contours of the computed pressure in the scattered field
for Mv = 0.125 and δ = 4. As seen from this figure, forward scattering dominates over
the backward one, and the maximum scattering is achieved in two directions which make
angles of about ±30◦ with the direction of incident wave propagation. The root-mean-square
pressure amplitude of the scattered waves, prms, is plotted as a function of ϕ for different
values of r in Fig. 14. The pressure is normalized by the incident wave pressure amplitude
p0 and the factor

√
λ/r . According to the analysis given in [23], the scattering amplitude

decays in the far field as
√

r . This is also attested to by the present calculations; the curves
in Fig. 14 tend to collapse into a single curve as the ratio r/λ increases.

The foregoing results from the present approach agree well with the results obtained in
[20], where the scattering of plane sound waves by a vortex has been investigated under
similar conditions by direct computation of the compressible Navier–Stokes equations. The
scattered field was also found in this research to prefer the direction of the incident wave
propagation, where peak scattering occurs at about ±30◦ from the incident wave direction.
In addition to this, the scattering was slightly asymmetrical with respect to the incident
wave direction. Such asymmetry is clearly discernible in Fig. 14 as well. There is only a
small discrepancy, which is within a few percent for the peak values of prms. This may be
explained by the effect of the source term S that is neglected in the present calculations.

As the wavelength of the incident waves increases, the wave pattern of the scattered
field changes qualitatively. The region where scattering waves travel extends toward the
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FIG. 14. Normalized root-mean-square pressure levels for Mv = 0.125 and δ = 4.

backward direction. The backscatter phenomenon is intensified and becomes comparable
with the forward scattering. For a low Mach number, a far-field approximation of the
scattered field can be analytically obtained in the limit where the acoustic waves have long
wavelength compared with the scale of the vortex. This is the so-called Born limit [24].
According to this analysis, the scattering of sound in the Born limit occurs in both forward
and backward directions with a typical quadrupole directivity wave pattern.

The backscatter phenomenon for long-wave incident waves has also been supported
by calculations performed with the present numerical model. As an example, in Fig. 15
we show instantaneous pressure contours of the scattered waves under the conditions of
Mv = 0.125 and λ/a = 10. The scattered field directivity is evidently of quadrupole type.
The distribution of the root-mean-square pressure versus the observation angle ϕ is plotted
in Fig. 16 for increasing values of the radius. The pressure is again normalized by the factor√

λ/r to validate the 1/
√

r scaling in the far field.
These results show that there are preferred scatterings in two forward directions and

two backward directions. Maximum scattering happens at polar angles of about ±40◦

and ±130◦. Overall, the backward scattering is about one-half the forward scattering.
This agrees well with the results of the far-field Born limit analysis in [24]. The 1/

√
r

decay of the scattered field in the far field is reached even at r = 2λ, as seen
from Fig. 16, where all curves for larger radii show little deviation from that for r = 2λ.
Note again that the scattering is found to be somewhat asymmetrical with respect to
ϕ = 0.

Calculations for the cases of stronger vortex flows are displayed in Figs. 17 and 18,
where the normalized values of prms are plotted as a function of the polar angle with radius
as a parameter. Here, the incident sound wave has δ = 4, and two vortex Mach numbers
are chosen: Mv = 0.25 and Mv = 0.8. A trend toward a more asymmetric pattern in the
scattered field is clearly seen as the vortex intensity increases. Thus, the scattering for
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FIG. 15. Instanteneous contours of pressure in the scattered field for Mv = 0.125 and δ = 10.

Mv = 0.8 occurs predominantly in the forward direction with a narrow angular sector,
which is shifted in the direction of vortex swirling by about 25◦ from the incident wave
direction. However, backward scattering also occurs in this case. This is in contrast to the
case of low-Mach-number scattering, where it is negligible.

FIG. 16. Normalized root-mean-square pressure levels for Mv = 0.125 and δ = 10.
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FIG. 17. Normalized root-mean-square pressure levels for Mv = 0.25 and δ = 4.

In accordance with the far-field approximation [24], the scattered field is symmetric about
the incident wave direction and the scattered pressure must vanish in the forward direction
with ϕ = 0 when the vortex Mach number is small. However, the foregoing computational
results exhibited asymmetric distributions and a finite scattering at ϕ = 0 as seen from

FIG. 18. Normalized root-mean-square pressure levels for Mv = 0.8 and δ = 4.
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FIG. 19. Finite scattering at the axis of symmetry behind the vortex versus Mach number for δ = 4.

Figs. 14, 16, and 17. These phenomena were also observed in DNS of the Navier–Stokes
equations in [20]. As discussed in this study, the discrepancy between theory and numerics
can be attributed to the inhomogeneity of density in the compressible vortex, which results in
additional scattering effects. This effect must be of O(M2

v ) as the Mach number decreases.
Therefore, it should be expected that the finite scattering at ϕ = 0 vanishes as M2

v when the
Mach number tends to zero. This was supported by the DNS of [20] by a logarithmic plot
of the far-field pressure amplitude of the scattered waves at ϕ = 0 versus Mv; the data were
found to have a straight-line trend with a slope of 2. Similar data obtained from the present
calculations are plotted in Fig. 19, which also indicates that the scaling with M2

v holds.

6.2. Incidence of Two-Dimensional Sound Waves on a Shock Wave

Another example application of the present numerical approach is the simulation of the
propagation of two-dimensional sound waves across a shock wave. The statement of this
problem is quite similar to that relating to the normal incidence of sound on a shock, which
was considered in the previous section. The computational domain is a box with dimensions
H and 2H on the vertical and horizontal sides, respectively, where the height H is taken as
H = 4 in nondimensional units. The base flow consists of two uniform flows upstream and
downstream of a stationary plane shock wave located at the middle of the domain normal
to the streamwise direction. The shock Mach number is set at Msh = 1.2.

The acoustic field is generated by two sources of sound, which are symmetrically arranged
upstream at the bottom and top boundaries. Each source is a vibrator (or speaker) that is
represented by a short rigid plate executing small harmonic oscillations in the direction
transverse to the base stream. The velocity of the vibration is given as Usp = U0 cos(ωt),
with ω being the frequency of oscillation. The length of each vibrator is 0.125H , and they
are placed at a distance 0.03H from the left inlet boundary.
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This problem is solved by using a uniform grid with 320 cells in the streamwise direction
and 160 cells in the transverse direction. All boundaries except for the speaker portion are
treated by nonreflecting boundary conditions. Moving-wall boundary conditions are applied
for the speaker boundaries.

Results of this calculation are shown in Fig. 20, where the computed sound pressure is
presented for several instants after the vibrators start generating sound waves of a frequency
ω = 4π . At the early stage of this process the sound waves propagate toward each other and
are drifted to the shock wave by the base flow. This is displayed in Figs. 20a and 20b. Before
interacting with each other, the waves pass through the shock wave with little refraction
so that the transmitted waves have almost the same wave pattern as the incident waves, as

FIG. 20. Time sequence of computed acoustic pressure contours; sound waves are generated by two speakers
in the upstream of a shock of Msh = 1.2.
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FIG. 20—Continued

can be seen in Fig. 20c. When the leading waves reach the centerline of the computational
domain, interference occurs between the incident waves, which is shown in Figs. 20d and
20e. This modifies the wave pattern behind the shock wave, which takes on a certain regular
cellular structure as shown in Fig. 20f.

7. CONCLUSIONS

A Godunov-type method has been proposed for computing propagation of acoustic dis-
turbances in nonuniform flows. This method can be thought of as a direct extension of the
Godunov second-order scheme for computational fluid dynamics to the acoustic equations.
A key point of the method is the use of the exact solution to the variational Riemann problem,
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which also can be recognized as the problem of interaction between two elementary dis-
turbances, to obtain the acoustic numerical flux. The solution to the VRP is represented
in terms of variation matrices associated with the left- and right-hand-side initial distur-
bance data. Exact formulas for these matrices have been analytically derived in explicit
compact form. Validation tests have been carried out to examine whether the proposed
approach can handle wave-type solutions. Calculations have been performed for several
problems that have exact analytical solutions: acoustic fields generated by monopole and
dipole sources and normal and oblique incidence of sound waves on a shock wave. The
numerical and analytical solutions have been found to be in good quantitative agreement.
Example calculations have shown the ability of the present method to accurately compute
scattering of sound by smooth vortical flows and propagation of sound waves in flow with a
shock wave.

The results and test cases in the present paper demonstrate the capabilities of the two-
dimensional version of the method on structured grids. Extension of the method to three
dimensions and unstructured grids appears promising; at least the application of the VRP
solution to these cases is straightforward. However, extensive validation of the method
implemented on 3-D unstructured grids is required, which will be done in our future work.
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